Amprion develops rotating asynchronous phase shifter

27.03.2020

When conventional power generation declines, additional technical measures are needed to ensure the stability of the electricity grids. The energy transition in Germany is prompting the four German transmission system operators (TSOs) to take compensatory measures to keep the grid voltage at the required level. An essential factor in maintaining voltage is reactive power, and TSOs respond to changes in the energy landscape by installing reactive power systems to compensate for the loss of reactive power previously provided by conventional power plants. Reactive power is particularly required for the AC transmission of large amounts of energy over long distances. This is likely to be a common practice in the energy future of Germany.

The German TSO Amprion and Siemens Energy plan to develop and install the world’s first rotating asynchronous phase shifter with a high output of approx. 300MVA. The innovative device is called ARESS: Asynchronous Rotating Energy System Stabilizer. It represents a new and fully integrated technology. In contrast to synchronous phase shifters, ARESS supplies far more rotation energy, especially when providing momentary reserve, and also over a longer period of time. The extremely responsive and powerful electrical equipment thus significantly contributes to frequency stability. ARESS is intended to complement and further develop the Statcom (static synchronous compensator) systems and synchronous phase shifters that are currently in use.

The ARESS project was launched on 26 March with the signing of an agreement by Dr. Klaus Kleinekorte, CTO of Amprion, and Dr. Jochen Eickholt, managing director and designated executive board member of Siemens Energy. Due to the Corona pandemic, the documents were signed via video conference. The technology partners are convinced that the ARESS technology can be designed much more cost-effectively and compactly than combinations of available technologies in the same scope of application. Amprion and Siemens Energy expect the project to run for four years until the pilot system can be put into operation.

Amprion and Siemens Energy are developing the rotating asynchronous phase shifter ARESS to provide reactive power (exemplary image of a rotating phase shifter: Siemens)

Linkup
> See Amprion press release, in German (html)

See article on single page

Construction of ULTRANET substation approved

27.03.2020

The Philippsburg nuclear power plant in the German state of Baden-Württemberg was shut down completely on 31 December 2019. On the power plant site, TSCNET shareholder TransnetBW, the Transmission System Operator (TSO) from the southwest of Germany, is planning a new DC substation with a required area of around 100,000m². The substation is to become one of the most important energy hubs in Germany’s future energy landscape, as the supra-regional high-voltage direct current (HVDC) line ULTRANET will be connected here to the regional 380kV AC grid.

After intensive planning, TransnetBW submitted the application for construction permit to the competent district administration for examination in June 2018. The Landratsamt Karlsruhe has now approved the plans of the TSO. “The DC substation plays a central role in integrating renewable energies into the transmission grid,” explains Dr. Werner Götz, Chairman of the TransnetBW Executive Board. “In the future, renewable electricity will flow from the Philippsburg site to the entire region. We are thus laying a cornerstone for supply security in a future without nuclear power and coal.”

ULTRANET, a European Project of Common Interest (PCI), is jointly implemented by TransnetBW and the further TSCNET shareholder Amprion. It will transfer wind energy generated in the northwest of Germany to the industrially highly developed southwest. The Philippsburg substation represents the southern end point of ULTRANET. Here, the DC transmitted via ULTRANET to Philippsburg is converted into AC and distributed throughout the region. Vice-versa, the substation allows the conversion of AC into DC, e.g. to transport surplus photovoltaic power from the south to the north.

TransnetBW has received official approval for the construction of the ULTRANET substation in Philippsburg (architectural sketch of the substation: Codema International GmbH / TransnetBW)

Linkup
> See TransnetBW press release, in German (html)

See article on single page

Paper on MRC extension

26.03.2020

The so-called 4M Market Coupling Countries (4M MC) – the Czech Republic, Hungary, Romania and Slovakia – are to be connected to the Europe-wide Multi Regional Coupling (MRC) of the electricity market. This will introduce Single Day-Ahead Coupling across 23 European countries. The initiative to implement the MRC expansion is the DE-AT-PL-4M MC Project, also known as “Interim Coupling Project”. The relevant transmission system operators (TSOs) from Austria, Czechia, Germany, Hungary, Poland, Romania and Slovakia – the TSCNET shareholders 50Hertz, APG, ČEPS, MAVIR, PSE, SEPS, TenneT, and Transelectrica – are part of the project consortium.

The AT-PL-4M MC Project establishes implicit capacity allocation based on Net Transfer Capacity (NTC) at six borders (PL-DE, PL-CZ, PL-SK, CZ-DE, CZ-AT, HU-AT). The Nominated Electricity Market Operators (NEMOs) and TSOs participating in the DE-AT-PL-4M MC Project now have published an information paper for market participants containing key information on the project in a question and answer format. This information includes the main expected changes for the market, the planned communication methods with market participants and a high-level technical description of the market design to be implemented by the project.

The partners of the AT-PL-4M MC Project for integrating Czechia, Hungary, Romania and Slovakia into MRC have published an information paper

Linkup
> Open AT-PL-4M MC information paper provided by MAVIR (pdf, 732.98kB)

See article on single page

TenneT creates, invests and researches for the energy future

12.03.2020

Promoting the energy transition is a priority objective of TSCNET shareholder TenneT, the Dutch-German transmission system operator (TSO). This is clearly reflected in the TSO’s just-published Integrated Annual Report. As in recent years, the Annual Report is accompanied by the Green Finance Report 2019.

In line with the energy policy and climate goals of the Netherlands and Germany, TenneT increased its investments yet again in 2019 and spent €3.1bn on the energy transition and supply security (grid availability of 99.9998% in 2019). This financial commitment is even to be stepped up: TenneT is planning annual investments of €4bn to €5bn for the future. The financial performance of the company, with revenues of €4.1bn in 2019 and an EBIT (excluding special effects) of €753m, supports these ambitious plans. Manon van Beek, CEO of TenneT, has every reason to be content with the sound development of the TSO: “We have made great strides again in pursuing our ambition to achieve a sustainable energy future for everyone. Not only in realising and developing new onshore and offshore connections, but also by the required far-reaching international cooperation and working on innovations in close coordination with relevant stakeholders.”

As regards offshore connections, TenneT has already exceeded in 2019 the German government’s expansion target for offshore wind power capacity in the North and Baltic Sea, which is 6.5GW for 2020. With last year’s commissioning of BorWin 3, TenneT’s ninth offshore grid connection system in DC technology, the TSO now has a total of twelve offshore grid connections in operation (nine in DC and three in AC technology) with a total capacity of 7.1GW. But TenneT is not resting on its successes to date: The connection systems DolWin5, DolWin6, and BorWin5 are being developed and will increase the offshore transmission capacity provided by TenneT for wind farms in the German North Sea to almost 10GW by 2025. In addition, Borssele Alpha, TenneT’s first offshore connection system in AC technology in the Dutch North Sea, was installed on schedule and is now ready for operation. Borssele Beta will be completed in 2020.

Onshore, TenneT has eight transmission lines under construction in Germany, more than ever before. In the Netherlands, the 60km-long Randstad 380kV North Ring power line was put into operation, reliably supplying Europe’s most densely populated area with electricity and providing transmission capacity for green energy. At European level, the “green” COBRAcable deserves special mention, which since 2019 directly connects the Dutch and Danish markets for the first time. The German and Norwegian markets will also be directly connected by the NordLink cable, which is currently under construction. On top of this, a proof-of-concept for the North Sea Wind Power Hub has shown the technical feasibility of the concept of multiple wind power distribution hubs in the North Sea.

All these grid expansion projects are complemented by innovative solutions and intensive research to better utilise TenneT’s existing transmission system. These include vehicle-to-grid pilots, the deployment of home storage systems in grid stabilisation and digital solutions for higher grid utilisation. Another long-term innovation project is Element One, a 100MW electrolysis plant to be built in Germany to promote an integrated energy system.

TenneT presents Integrated Annual Report 2019 and Green Finance Report 2019 (picture: TenneT)

Linkup
> See TenneT press release (html)
> Visit Integrated Annual Report 2019 site (html)
> Direct access to the report download (html)
> Open Green Finance Report 2019 (pdf, 802.38kB)

See article on single page

50Hertz: More renewables, less redispatch

10.03.2020

For 50Hertz, the transmission system operator (TSO) from the north-east of Germany, the 2019 business year was successful in two respects: More renewable power than ever before was transmitted by 50Hertz. At the same time, fewer and fewer redispatch measures were required for congestion management. This of course also means that the TSCNET shareholder was able to continuously reduce its redispatch costs.

At the 50 Hertz annual media conference in the German capital of Berlin, the TSO presented the following figures: A total of around 60TWh of renewable energy was fed into the grid, mainly generated by wind and sun. This once again set a record in the 50Hertz control area, where renewable energies already cover up to 60% of the average annual electricity demand. In congestion management, 50Hertz was able to reduce the throttled energy volumes from 4TWh in 2018 to only 2.5TWh in 2019 and cut redispatch costs from €134m to €84m.

Stefan Kapferer, CEO of 50Hertz, commented on the TSO’s success: “The north-east of Germany continues to evolve into a ‘green power plant’ of the energy transition in Germany. Even with a constantly growing share of wind and solar power in the grid, we keep the costs under control. With regard to the time after the exit from coal- and lignite-fired generation, we stand for the security of the power system and create the necessary preconditions.”

50Hertz keeps on creating the technical conditions for future success and is making good progress in grid optimisation, reinforcement and expansion. Last year, the offshore grid connection Ostwind 1 was officially commissioned. In addition, 50Hertz lines and substations have been reinforced. To improve the prognosis of grid losses, artificial intelligence (AI) is used in the 50Hertz grid. All this is not possible without sustained financial commitment. Thanks to consistently good business performance – annual result 2019: €178m (2018: €238m) – the TSO will significantly increase its infrastructure investments: In the period 2020 to 2024, investments will grow by €1.1bn to €4.2bn compared to the time span 2015 to 2019.

50Hertz presents impressive figures for 2019 and announces increased investments (picture of Kerstin Maria Rippel, Head of Communications & Public Affairs at 50Hertz, 50Hertz CEO Stefan Kapferer, 50Hertz CFO Marco Nix, and Chris Peeters, CEO of Elia Group: 50Hertz / Jan Pauls)

See article on single page

TenneT concludes successful V2G pilot

04.03.2020

Considering the increase in renewable energies, electromobility represents an additional challenge, but also an opportunity for transmission system operators (TSOs). The decentralised feed-in of renewable energies leads to transport bottlenecks in the transmission grid, but when it comes to balancing power generation and consumption, electric vehicles can contribute to maintaining the balance and security of supply. For this reason, TSCNET shareholder Tennet, the Dutch-German TSO, is intensively researching this field. Together with car manufacturer Nissan and energy service provider The Mobility House, the TSO now has successfully concluded a substantive vehicle-to-grid (V2G) pilot project, which was initiated in March 2018.

As part of a SINTEG (“Schaufenster intelligente Energie” – “Smart Energy Showcases“) project sponsored by the German Federal Ministry for Economic Affairs and Energy, the partners have investigated the potential of electric vehicle batteries in storing and feeding back locally produced electricity in order to stabilise the power grid and at the same time increase the use of renewable energies and save CO2. During the project phase, Nissan electric vehicles were deployed as mobile energy storage systems in the TenneT control area in northern and southern Germany to instantly reduce local overloads in power supply and demand.

The project offers a significant solution to the increasingly frequent bottlenecks. The wind power available in northern Germany was used by electric cars in the region. At the same time, in the south, electricity from fully charged batteries of Nissan LEAF vehicles was fed back into the grid instead of raising fossil generation. These smart redistribution measures were controlled by software from The Mobility House, the smart charge and energy management system ChargePilot, which follows TenneT’s specifications and also considers the mobility and charging requirements of vehicle users.

TenneT managing director Tim Meyerjürgens comments on the V2G research: “The pilot project has shown that we will be able to use electric mobility in the future to flexibly manage renewable electricity production, which is highly dependent on the weather. This relieves the strain on the electricity grid and helps us to limit the expensive throttling of wind turbines. The short-term flexibility, which is thus provided to us by electromobility, can supplement the grid expansion and become an important component of the energy transition.”

TenneT, Nissan, and The Mobility House have successfully concluded a research project on the use of automobile battery systems for grid stabilisation (picture: screenshot taken from TenneT video “Kooperationsprojekt Stabilisierung des Stromnetzes – Vehicle 2 Grid“, YouTube)

Linkup
> See TenneT press release, in German (html)

See article on single page

BorWin3 operation handed over to TenneT

14.02.2020

The offshore grid connection BorWin3 in the German Bight near the island of Borkum has been operational since August 2019. The twelfth offshore grid connection project of TSCNET shareholder TenneT, the Dutch-German transmission system operator (TSO), extends TenneT’s transmission capacity for offshore wind farms in the German North Sea by a further 900MW, so that the total capacity already amounts to 7.132GW – and since the German government’s expansion targets for wind energy in the North Sea by 2020 are only 6.5GW, the TSO has clearly exceeded them.

After several weeks of trial operation, BorWin3 has now been handed over to TenneT by the general contractors. The consortium of Siemens and Petrofac was responsible for the construction, transport, installation and commissioning of the two BorWin3 converters (offshore and onshore). The transfer of operations represents a further major contribution to the energy transition in Germany and Europe.

At the same time, TenneT is pursuing ambitious goals for its Dutch offshore projects. The TSO is planning on a large scale, as the Dutch government has set a target in its “Offshore Wind Roadmap 2030” to reach a cumulative offshore wind capacity of 11.5GW by 2030, so that 40% of the Dutch electricity demand will then come from offshore wind farms. In the IJmuiden Ver wind energy area, off the coast of the region of North Holland, the company intends to implement two 2GW offshore grid connections to complement the eight 0.7GW AC grid connections already planned in the Dutch North Sea. As there is currently no 2GW grid connection, a new platform design and a high-voltage direct current (HVDC) transmission system that enables increased power transmission are required.

Furthermore, given the long distance to the coast and the size of the IJmuiden Ver wind energy area, a 2GW HVDC solution based on 525kV seems to be the most economically solution. It requires only one cable system per 2GW, which limits the impact on the environment and surroundings. The technology is by no means fundamentally new to TenneT. The TSO can draw on its extensive HVDC experience with offshore grid connections in Germany and with interconnectors. TenneT also uses the 525kV level for NordLink, the new offshore connection between Germany and Norway.

To implement such an innovative DC system, TenneT has initiated the design phase with five HVDC suppliers based on an innovation partnership. These suppliers will develop the advanced 2GW-525kV HVDC solution based on the criteria defined by the company and the technical capabilities of the partners.

The operation of BorWin3 was handed over to TenneT (picture of the offshore converter platform BorWin gamma: TenneT)

Linkup
> See TenneT press release on BorWin3, in German (html)
> See TenneT press release on Dutch 2GW plans (html)
> Watch BorWin3 project movie, in German (YouTube)

See article on single page

Redispatch with renewable energy systems in practical test

12.02.2020

In Germany, redispatch measures for the eliminations of bottlenecks within the transmission grid are currently limited to conventional power generation plants. An amendment to the German Energy Industry Act with effect from 1 October 2021 allows renewable-energy facilities to be deployed for redispatch measures. These new regulations will strengthen the role of renewables in the maintenance of electricity system security. The task now is to ensure balance sheet handling for such redispatch measures and to develop a mode for the financial settlement of the interventions.

For this reason, TSCNET shareholder 50Hertz, the transmission system operator (TSO) from north-east Germany, has entered into an agreement with the Norwegian energy company Statkraft, Europe’s largest producer of renewable energy, to jointly test redispatch with renewable energy systems in practice. The key objective of these practical tests is being able to calculate the necessary effort for redispatch measures with renewable energy systems. 50Hertz accesses wind farms marketed by Statkraft in Brandenburg and Mecklenburg-Western Pomerania that are directly connected to the TSO’s transmission grid or to a regional distribution grid. 50Hertz and Statkraft want to test demand variants for the wind farms to allow the legal requirements to be implemented efficiently and safely with this new form of redispatch.

Dr Dirk Biermann, Managing Director Markets and Systems Operation at 50Hertz, explains that due to the new legal regulations, TSOs will in future have various options for the demand of redispatch for plants in the distribution grid. Dr Biermann comments on the forthcoming practice tests: “Demand via the distribution system operator is just as possible as direct demand by 50Hertz. Our aim is to identify the most efficient way. We hope that the field test will provide us with important insights in this regard.”

50Hertz and Statkraft have agreed to jointly test redispatch with renewable energy systems in practice

Linkup
> See 50Hertz press release (html)

See article on single page

Tennet conducts market survey on grid boosters

07.02.2020

Power generation in Germany is changing rapidly in the course of the energy transition and a 65% share of renewable energies is expected in 2030. To meet the challenge of integrating these quantities of renewables, it is necessary for the four German transmission system operators (TSOs) to supplement the mandatory grid expansion with technical innovations. The higher utilisation of the existing transmission system plays a particularly important role in this respect, because if the generated electricity exceeds line capacities, the TSOs have to carry out costly redispatch measures.

TSCNET shareholder TenneT, the Dutch-German TSO, plans to implement grid boosters, an innovation also considered in the German “Network Development Plan 2030”. The general idea of grid boosters involves fast power sources in the form of large batteries. TenneT’s grid booster concept provides for a higher utilisation of the grid during smooth operation. If a transmission line within the monitoring range of the grid boosters exceeds a predefined limit value, the load of the respective circuit is restored to permanently permissible values within a short time by reactive use of the grid boosters.

TenneT is now conducting a market survey on the grid boosters. The purpose of this enquiry is to prepare for the award of contracts and to inform the market players. All interested parties are invited to participate in this process and to submit a written statement on the intended approach by 31 March 2020 via a platform set up by the TSO. The results of the process should help TenneT to carry out a competitive, transparent and non-discriminatory award procedure.

TenneT invites market players to participate in a market survey on grid boosters

Linkup
> See TenneT press release, in German (html)
> Visit market survey platform, in German (html)

See article on single page

Austro-German cooperation on control reserve

05.02.2020

The Austrian transmission system operator (TSO) APG and the four German TSOs 50Hertz, Amprion, TenneT, and TransnetBW are intensifying their cooperation in terms of balancing energy. Since December 2019, the five TSCNET shareholders have been exchanging minutes reserve, i.e. the provision of short-term power reserves to balance fluctuations in generation and consumption that affect frequency. Minutes reserve comes into play after primary control and secondary reserve, the two short-term effective balancing energies. Austria and Germany are thus the first countries in Europe to cooperate on all types of control reserve and make a significant contribution to secure electricity supply in Europe.

The cooperation with the project name “GAMMA” (German-Austrian Manual Merit Order Activation) is trendsetting, as it is the first collaboration in the field of minutes reserve to fulfil the objectives of the EU guideline for electricity balancing on a regional scale. Germany and Austria are testing a regional internal market for the joint utilisation of minutes reserve and will contribute their new experience with the integration of control energy markets to the European “MARI” (Manually Activated Reserves Initiative) project.

Beyond the requirements of the guideline, the Austro-German cooperation will be expanded in February 2020 to include the joint procurement of secondary reserves. It is intended that in an initial phase up to 80MW, later up to 280MW, can be procured across borders. The cost-benefit analysis for the allocation of cross-border transport capacities was jointly developed by the cooperating TSOs. It compares the market value of cross-border transmission capacity for the day-ahead market with that of the secondary reserve, thereby optimising procurement and determining the amount of cross-border transmission capacity allocated to the secondary reserve. This cooperation also represents a lighthouse project in Europe and anticipates the goals of the EU Clean Energy for All Europeans Package.

The Austrian TSO APG and the four German TSOs 50Hertz, Amprion, TenneT, and TransnetBW exchange minutes reserve in a regional internal market

Linkup
> See 50Hertz press release, in German (html)
> See Amprion press release, in German (html)
> See TransnetBW press release, in German (html)

See article on single page