Amprion develops rotating asynchronous phase shifter

27.03.2020

When conventional power generation declines, additional technical measures are needed to ensure the stability of the electricity grids. The energy transition in Germany is prompting the four German transmission system operators (TSOs) to take compensatory measures to keep the grid voltage at the required level. An essential factor in maintaining voltage is reactive power, and TSOs respond to changes in the energy landscape by installing reactive power systems to compensate for the loss of reactive power previously provided by conventional power plants. Reactive power is particularly required for the AC transmission of large amounts of energy over long distances. This is likely to be a common practice in the energy future of Germany.

The German TSO Amprion and Siemens Energy plan to develop and install the world’s first rotating asynchronous phase shifter with a high output of approx. 300MVA. The innovative device is called ARESS: Asynchronous Rotating Energy System Stabilizer. It represents a new and fully integrated technology. In contrast to synchronous phase shifters, ARESS supplies far more rotation energy, especially when providing momentary reserve, and also over a longer period of time. The extremely responsive and powerful electrical equipment thus significantly contributes to frequency stability. ARESS is intended to complement and further develop the Statcom (static synchronous compensator) systems and synchronous phase shifters that are currently in use.

The ARESS project was launched on 26 March with the signing of an agreement by Dr. Klaus Kleinekorte, CTO of Amprion, and Dr. Jochen Eickholt, managing director and designated executive board member of Siemens Energy. Due to the Corona pandemic, the documents were signed via video conference. The technology partners are convinced that the ARESS technology can be designed much more cost-effectively and compactly than combinations of available technologies in the same scope of application. Amprion and Siemens Energy expect the project to run for four years until the pilot system can be put into operation.

Amprion and Siemens Energy are developing the rotating asynchronous phase shifter ARESS to provide reactive power (exemplary image of a rotating phase shifter: Siemens)

Linkup
> See Amprion press release, in German (html)

See article on single page

Construction of ULTRANET substation approved

27.03.2020

The Philippsburg nuclear power plant in the German state of Baden-Württemberg was shut down completely on 31 December 2019. On the power plant site, TSCNET shareholder TransnetBW, the Transmission System Operator (TSO) from the southwest of Germany, is planning a new DC substation with a required area of around 100,000m². The substation is to become one of the most important energy hubs in Germany’s future energy landscape, as the supra-regional high-voltage direct current (HVDC) line ULTRANET will be connected here to the regional 380kV AC grid.

After intensive planning, TransnetBW submitted the application for construction permit to the competent district administration for examination in June 2018. The Landratsamt Karlsruhe has now approved the plans of the TSO. “The DC substation plays a central role in integrating renewable energies into the transmission grid,” explains Dr. Werner Götz, Chairman of the TransnetBW Executive Board. “In the future, renewable electricity will flow from the Philippsburg site to the entire region. We are thus laying a cornerstone for supply security in a future without nuclear power and coal.”

ULTRANET, a European Project of Common Interest (PCI), is jointly implemented by TransnetBW and the further TSCNET shareholder Amprion. It will transfer wind energy generated in the northwest of Germany to the industrially highly developed southwest. The Philippsburg substation represents the southern end point of ULTRANET. Here, the DC transmitted via ULTRANET to Philippsburg is converted into AC and distributed throughout the region. Vice-versa, the substation allows the conversion of AC into DC, e.g. to transport surplus photovoltaic power from the south to the north.

TransnetBW has received official approval for the construction of the ULTRANET substation in Philippsburg (architectural sketch of the substation: Codema International GmbH / TransnetBW)

Linkup
> See TransnetBW press release, in German (html)

See article on single page

Borssele Beta platform topside ready for sail out

20.03.2020

In the Borssele offshore wind farm area in the south-western part of the Dutch North Sea, Borssele Alpha, the first and largest connection system for wind farms from the Dutch-German transmission system operator (TSO) TenneT in Dutch territorial waters, is already in operation. Now the TSCNET shareholder is in the process of installing Borssele Beta to connect further wind farms, in this case Borssele III and IV that are still under construction. The topside of the offshore transformer platform for Borssele Beta is now ready for shipping. It was built at the construction yard of the offshore platform specialist HSM Offshore in Schiedam in the Rotterdam-The Hague metropolitan area and will be put to sea on 22 March 2020.

When the pontoon carrying the 3,650-tonne superstructure arrives at its destination, a crane vessel will place the top side on the platform substructure (jacket). The top side comprises three interior levels and an outer deck. It is 25 metres high, 58 metres long and 32 metres wide. The Borssele Beta grid connection will have a capacity of 700MW and is scheduled to be commissioned on 1 September 2020. The Borssele III, IV, and V wind farms, which are located about 22km from the coast, will be connected to this transmission system. Borssele V by the Two Towers consortium has been designated as an innovation site within the wind farm zone and will be connected to Borssele Beta. The electricity generated by these offshore wind farms will then be transported ashore via two 67-kilometre-long cables to the high-voltage transformer station near the town of Borssele in the Dutch province of Zeeland.

Marco Kuijpers, Director Offshore Projects a TenneT, comments on the TSO’s progress in offshore expansion: “With this platform, the offshore grid that TenneT is building in the Dutch North Sea is definitively taking shape. Borssele Beta is the second offshore grid connection built by TenneT. Over the coming eight years we will build a new offshore connection every year. I am proud that we are able to make such a significant contribution to the energy transition in which offshore wind energy plays a crucial role.”

TenneT also assumes a marine ecological responsibility and makes its offshore platforms available for other uses. The TSO cooperates in this respect with the Dutch Directorate-General for Public Works and Water Management (Rijkswaterstaat). The Borssele Beta offshore platform therefore also features a Maritime Information Provision Service Point (MIVSP). This is a monitoring station with various monitoring systems, such as nautical radars, meteorological systems and ecological monitoring systems. Similar stations are being installed on every TenneT offshore transformer platform.

The topside of the offshore transformer platform Borssele Beta of TenneT is constructed and ready for shipping (picture: HSM Offshore)

Linkup
> See TenneT press release (html)

See article on single page

TenneT creates, invests and researches for the energy future

12.03.2020

Promoting the energy transition is a priority objective of TSCNET shareholder TenneT, the Dutch-German transmission system operator (TSO). This is clearly reflected in the TSO’s just-published Integrated Annual Report. As in recent years, the Annual Report is accompanied by the Green Finance Report 2019.

In line with the energy policy and climate goals of the Netherlands and Germany, TenneT increased its investments yet again in 2019 and spent €3.1bn on the energy transition and supply security (grid availability of 99.9998% in 2019). This financial commitment is even to be stepped up: TenneT is planning annual investments of €4bn to €5bn for the future. The financial performance of the company, with revenues of €4.1bn in 2019 and an EBIT (excluding special effects) of €753m, supports these ambitious plans. Manon van Beek, CEO of TenneT, has every reason to be content with the sound development of the TSO: “We have made great strides again in pursuing our ambition to achieve a sustainable energy future for everyone. Not only in realising and developing new onshore and offshore connections, but also by the required far-reaching international cooperation and working on innovations in close coordination with relevant stakeholders.”

As regards offshore connections, TenneT has already exceeded in 2019 the German government’s expansion target for offshore wind power capacity in the North and Baltic Sea, which is 6.5GW for 2020. With last year’s commissioning of BorWin 3, TenneT’s ninth offshore grid connection system in DC technology, the TSO now has a total of twelve offshore grid connections in operation (nine in DC and three in AC technology) with a total capacity of 7.1GW. But TenneT is not resting on its successes to date: The connection systems DolWin5, DolWin6, and BorWin5 are being developed and will increase the offshore transmission capacity provided by TenneT for wind farms in the German North Sea to almost 10GW by 2025. In addition, Borssele Alpha, TenneT’s first offshore connection system in AC technology in the Dutch North Sea, was installed on schedule and is now ready for operation. Borssele Beta will be completed in 2020.

Onshore, TenneT has eight transmission lines under construction in Germany, more than ever before. In the Netherlands, the 60km-long Randstad 380kV North Ring power line was put into operation, reliably supplying Europe’s most densely populated area with electricity and providing transmission capacity for green energy. At European level, the “green” COBRAcable deserves special mention, which since 2019 directly connects the Dutch and Danish markets for the first time. The German and Norwegian markets will also be directly connected by the NordLink cable, which is currently under construction. On top of this, a proof-of-concept for the North Sea Wind Power Hub has shown the technical feasibility of the concept of multiple wind power distribution hubs in the North Sea.

All these grid expansion projects are complemented by innovative solutions and intensive research to better utilise TenneT’s existing transmission system. These include vehicle-to-grid pilots, the deployment of home storage systems in grid stabilisation and digital solutions for higher grid utilisation. Another long-term innovation project is Element One, a 100MW electrolysis plant to be built in Germany to promote an integrated energy system.

TenneT presents Integrated Annual Report 2019 and Green Finance Report 2019 (picture: TenneT)

Linkup
> See TenneT press release (html)
> Visit Integrated Annual Report 2019 site (html)
> Direct access to the report download (html)
> Open Green Finance Report 2019 (pdf, 802.38kB)

See article on single page

50Hertz: More renewables, less redispatch

10.03.2020

For 50Hertz, the transmission system operator (TSO) from the north-east of Germany, the 2019 business year was successful in two respects: More renewable power than ever before was transmitted by 50Hertz. At the same time, fewer and fewer redispatch measures were required for congestion management. This of course also means that the TSCNET shareholder was able to continuously reduce its redispatch costs.

At the 50 Hertz annual media conference in the German capital of Berlin, the TSO presented the following figures: A total of around 60TWh of renewable energy was fed into the grid, mainly generated by wind and sun. This once again set a record in the 50Hertz control area, where renewable energies already cover up to 60% of the average annual electricity demand. In congestion management, 50Hertz was able to reduce the throttled energy volumes from 4TWh in 2018 to only 2.5TWh in 2019 and cut redispatch costs from €134m to €84m.

Stefan Kapferer, CEO of 50Hertz, commented on the TSO’s success: “The north-east of Germany continues to evolve into a ‘green power plant’ of the energy transition in Germany. Even with a constantly growing share of wind and solar power in the grid, we keep the costs under control. With regard to the time after the exit from coal- and lignite-fired generation, we stand for the security of the power system and create the necessary preconditions.”

50Hertz keeps on creating the technical conditions for future success and is making good progress in grid optimisation, reinforcement and expansion. Last year, the offshore grid connection Ostwind 1 was officially commissioned. In addition, 50Hertz lines and substations have been reinforced. To improve the prognosis of grid losses, artificial intelligence (AI) is used in the 50Hertz grid. All this is not possible without sustained financial commitment. Thanks to consistently good business performance – annual result 2019: €178m (2018: €238m) – the TSO will significantly increase its infrastructure investments: In the period 2020 to 2024, investments will grow by €1.1bn to €4.2bn compared to the time span 2015 to 2019.

50Hertz presents impressive figures for 2019 and announces increased investments (picture of Kerstin Maria Rippel, Head of Communications & Public Affairs at 50Hertz, 50Hertz CEO Stefan Kapferer, 50Hertz CFO Marco Nix, and Chris Peeters, CEO of Elia Group: 50Hertz / Jan Pauls)

See article on single page

Deep Dig-It trencher at work for TenneT

09.03.2020

The Hollandse Kust (South) offshore wind area in the Dutch North Sea is located 22 kilometres off the coast of the Dutch province of Zuid-Holland. TSCNET shareholder TenneT is responsible for connecting the wind farms under construction there via two corresponding offshore platforms to the onshore high-voltage substation in the industry and port area of Maasvlakte, from where the green electricity is transmitted further to the Randstad 380kV South Ring power line in the Dutch Randstad region, the most densely populated area in Europe, and further.

But there is a major challenge to be met by the Dutch-German transmission system operator (TSO): On the first ten kilometres of the offshore route, the four submarine cables to be laid are crossing the entrance to Europe’s busiest cargo port, the port of Rotterdam. To pass through the busy Rotterdam-Maasmond shipping lane, the cables here must be buried more than 5 metres deep into the seabed. For this specific job, the Dutch maritime contracting company Van Oord designed and built the Deep Dig-It trencher, a gigantic remote-controlled trencher.

Last Friday, final tests were carried out in the Aleksiahaven of Maasvlakte in preparation for the actual laying of the submarine cables in July. The innovative device is a so-called Tracked Remotely Operated Vehicle, which drives unmanned over the seabed, creates a deep trench for the cables, inserts the cables and closes the trench again. The Deep Dig-It is the largest and most powerful machine in its class. The trencher weighs 125 tonnes, is more than 17 metres long, well over 8 metres high and 11 metres wide. This makes it possible to bury cables in very hard ground, while the burial depth that can be achieved with the Deep Dig-It is well over 5 metres.

TenneT employs the powerful Deep Dig-It trencher to connect the Hollandse Kust (South) wind farms to the onshore grid (picture: Van Oord nv)

Linkup
> See TenneT press release (html)

See article on single page

COBRAcable proves to be a great success

06.03.2020

It is now half a year since TSCNET customer Energinet, the transmission system operator (TSO) from Denmark, and TSCNET shareholder TenneT, the Dutch-German TSO, made COBRAcable available to the market. The high-voltage DC cable with a length of about 325km and a capacity of 700MW is the first direct connection between the electricity markets of Denmark and the Netherlands. The basic idea behind COBRAcable is to compensate for the volatility of wind power. Consequently, the Netherlands imports electricity via the cable on days with large Danish wind power generation, while on days with little wind in Denmark the electricity is transported in the opposite direction.

This works perfectly, as the interconnector’s transmission data from the first six-month period prove: In total, Denmark has imported almost 700GWh via the COBRAcable and the Netherlands almost 1,400GWh. On average, COBRAcable was operated at full capacity 79% of the time during the last half year. The impressive traffic on this binational connection proves its adequacy through its operation. The new interconnector therefore substantially contributes to the energy transition by exchanging volatile renewable energy across borders and additionally creates a trading profit on the spot market for electricity – a multiple benefit for nature, society and the companies involved.

The transmission data from the COBRAcable of Energinet and TenneT confirm a high level of traffic on the line (picture: screenshot taken from Energinet-video “Constructing the green COBRAcable”, Vimeo)

Linkup
> See Energinet press release (html)

See article on single page

TenneT concludes successful V2G pilot

04.03.2020

Considering the increase in renewable energies, electromobility represents an additional challenge, but also an opportunity for transmission system operators (TSOs). The decentralised feed-in of renewable energies leads to transport bottlenecks in the transmission grid, but when it comes to balancing power generation and consumption, electric vehicles can contribute to maintaining the balance and security of supply. For this reason, TSCNET shareholder Tennet, the Dutch-German TSO, is intensively researching this field. Together with car manufacturer Nissan and energy service provider The Mobility House, the TSO now has successfully concluded a substantive vehicle-to-grid (V2G) pilot project, which was initiated in March 2018.

As part of a SINTEG (“Schaufenster intelligente Energie” – “Smart Energy Showcases“) project sponsored by the German Federal Ministry for Economic Affairs and Energy, the partners have investigated the potential of electric vehicle batteries in storing and feeding back locally produced electricity in order to stabilise the power grid and at the same time increase the use of renewable energies and save CO2. During the project phase, Nissan electric vehicles were deployed as mobile energy storage systems in the TenneT control area in northern and southern Germany to instantly reduce local overloads in power supply and demand.

The project offers a significant solution to the increasingly frequent bottlenecks. The wind power available in northern Germany was used by electric cars in the region. At the same time, in the south, electricity from fully charged batteries of Nissan LEAF vehicles was fed back into the grid instead of raising fossil generation. These smart redistribution measures were controlled by software from The Mobility House, the smart charge and energy management system ChargePilot, which follows TenneT’s specifications and also considers the mobility and charging requirements of vehicle users.

TenneT managing director Tim Meyerjürgens comments on the V2G research: “The pilot project has shown that we will be able to use electric mobility in the future to flexibly manage renewable electricity production, which is highly dependent on the weather. This relieves the strain on the electricity grid and helps us to limit the expensive throttling of wind turbines. The short-term flexibility, which is thus provided to us by electromobility, can supplement the grid expansion and become an important component of the energy transition.”

TenneT, Nissan, and The Mobility House have successfully concluded a research project on the use of automobile battery systems for grid stabilisation (picture: screenshot taken from TenneT video “Kooperationsprojekt Stabilisierung des Stromnetzes – Vehicle 2 Grid“, YouTube)

Linkup
> See TenneT press release, in German (html)

See article on single page

Winter storms break feed-in records

03.03.2020

In February 2020, electricity generation from wind energy set new records throughout Europe, as shown by calculations of the International Economic Forum for Renewable Energies (Internationales Wirtschaftsforum Regenerative Energien – IWR) based on data from European transmission system operators (TSOs). In Europe (still including the UK), almost 54,000GWh of wind power was fed into the grid (February 2019: 34,300GWh). In Germany, almost twice as much electricity was generated by wind turbines as in the same month of the previous year, with wind power exceeding the 20.000GWh mark for the first time in one month (February 2019: 10,800GWh).

Driven by the hurricane gusts of winter storm Sabine (Ciara in English speaking countries and Elsa in Scandinavia), the German wind turbines in the second week of February temporarily supplied almost 44GW of climate-friendly electricity to the grid and thus covered two thirds of Germany’s demand for electricity – whereas the German government has only set a target of 65% for 2030. However, the trend-setting wind power peak in Germany also has unpleasant side effects. Grid extension not always keeps pace with these quantities – mostly due to appeal procedures and approval processes – and hence sometimes more wind power is produced than some lines can handle. In such cases emergency measures are routinely taken by the TSOs as part of their congestion management and turbines have to be taken off the grid.

But TSOs also constantly improve their control and capacity management, e. g. 50Hertz, the TSO from the windy north-east of Germany. Between 6.30pm and 6.45pm, a wind feed of 16,270MW was registered in the TSO’s control area. At the same time, only 460MW (and thus a very small percentage) had to be throttled. Thanks to optimised grid control and capacity utilisation, most of the wind power generated was transmitted from the north to the south of Germany and almost completely used. By way of comparison, the previous record was set on 4 March 2019, when 16,217MW of wind energy was fed in, but at the same time around 1,300MW still had to be curtailed. Dr Dirk Biermann, Chief Markets and System Operations Officer at 50Hertz, comments on this success: “This exceptionally good ratio between feed-in and curtailment shows that the measures we have taken to increase the capacity and optimise our grid are having a positive effect.”

During the winter storms in February 2020, which led to record feeds of wind energy throughout Europe, 50Hertz had to throttle almost no energy

Linkup
> See 50Hertz press release (html)
> See IWR press release, in German (html)
> Visit Fraunhofer ISE Energy Charts website (html)

See article on single page

“The grid demands digitisation and AI”

02.03.2020

Europe’s high-voltage grid has a total length of around 485,000km and continuously feeds in approx. 1,152,017MW of electricity. The transnational grid can be considered as the backbone of all European critical infrastructures, whose reliable operation is essential for Europe to function as an economic zone. Since this aspect is too often neglected, Maik Neubauer, one of the two Managing Directors of TSCNET Services, the Munich-based Regional Security Coordinator (RSC), has taken the opportunity to share his views on the prospects of the European electricity transmission system in an interview in the current issue (1/2020) of the “THEMEN:magazin”. This German-language medium bi-monthly provides reports on economic challenges and opportunities with a focus on energy policy.

Neubauer points out that, although the European interconnected grid is one of the most complex infrastructures in the world, there have so far hardly been any significant blackout situations – thanks to the cooperation of the European transmission system operators (TSOs), which has been well-established for decades. But since the energy transition is a pan-European project, the increasing flows of electricity from renewable sources do not stop at the border. European TSOs face the challenge of integrating numerous additional energy sources into the grid and operational control processes. Due to the predominance of nuclear and fossil power generation to date, the forecasting and control processes for optimum utilisation and balancing of the European grid have so far been rather deterministic, which is currently changing at a rapid pace with the volatile renewable energies.

Therefore, in addition to grid expansion and swift digitisation of control processes, increased European coordination of congestion and capacity management is essential. The EU network codes and, of course, the RSCs are crucial for this, as Neubauer emphasises. The RSCs receive data on expected grid situations from almost all European TSOs. This information is aggregated by the RSCs to provide an “early warning system” that identifies potential bottlenecks and threats to the grid. The RSCs thus support their TSO customers to counteract potential blackout situations in Europe by taking real- and near-time mitigation actions in their system operations and planning departments. Nevertheless, according to Neubauer, swift digitisation is inevitable to cope with the increasing data volumes in European grid management caused by the integration of renewable energy sources.

Without the seamless interaction of operations technology (OT) and information technology (IT), secure grid management will hardly be possible in the future. Neubauer also predicts that without a high level of artificial intelligence (AI), the complexity in critical infrastructures will no longer be controllable by humans in the medium term. Therefore, AI will soon also radically change the energy sector. Neubauer is well aware, however, that IT security and cyber security must have the highest priority in order to safeguard developments in AI and protect highly critical infrastructures from misuse or even terrorism.

“Artificial intelligence will be indispensable” – in an interview with the “THEMEN:magazin”, Maik Neubauer presented his view on the perspectives of the European electricity transmission system

Linkup
> Visit “THEMEN:magazin” webpage, in German (html)

See article on single page