Smart control of heat pumps – HeatFlex expands

08.07.2020

Launched in the summer of 2018, the HeatFlex research project aims to exploit the potential for grid stabilisation that small and decentralised consumer devices can offer – if actively involved in the stabilising process. The founding project members are TSCNET shareholder TenneT, the Dutch-German transmission system operator (TSO), and the southern German distribution system operator (DSO) Bayernwerk Netz. Following the successful cooperation and positive test results, TenneT and Bayernwerk Netz are now expanding the project. The grid operators are pleased to welcome three new project partners: the DSO Regensburg Netz as well as the public utilities Stadtwerk Haßfurt and SWW Wunsiedel.

With HeatFlex, TenneT and Bayernwerk are jointly researching the most effective integration of decentralised devices – such as electric storage heaters, heat pumps, and water heaters – into grid balancing. These flexible capacities are intended to avoid cost-intensive interventions by the TSO in the case of future grid bottlenecks. Since November 2019, the project partners have already been implementing the first concrete measures based on HeatFlex results: The heat pumps and direct heating systems connected to Bayernwerk Netz are being intelligently controlled for bottleneck prevention. Decentralised heating systems are thus partially taking over the stabilising function of fossil plants. Using ripple control technology already in place, no additional investments are required.

The increase in partners should serve to make intelligent use of even more local flexibility and to investigate further controllable, decentralised consumption units and alternative applications. The ultimate aims of HeatFlex are cost savings, reduction of grid extension, and the acceleration of the energy transition without jeopardising system security. “The intelligent control of the smallest, decentralised electricity consumption units is a small but essential element,” explains TenneT Managing Director Tim Meyerjürgens, “because the many pieces of the puzzle together make up the overall picture of the energy transition”.

The research project HeatFlex is extended with three additional partners (picture: Stiebel Eltron)

Linkup
> See TenneT press release, in German (html)

See article on single page

Redispatch harmonisation in Germany

26.06.2020

Up until now, redispatch measures between the four German transmission system operators (TSOs) – 50Hertz, Amprion, TenneT, and TransnetBW – and the operators of power plants and storage facilities with a capacity of more than 10MW have been carried out on the basis of IT tools specific to the particular TSO control area. In order to align the individual procedures nationwide, the four TSCNET shareholders on 26 June successfully put the first component of their joint redispatch platform into operation, the “Redispatch Settlement Server” (“Redispatch-Abwicklungsserver” – RAS).

The German electricity market is increasingly characterised by volatile generation and RAS is an instrument to initiate redispatch measures both faster and more flexibly. With harmonised data formats and processes, the redispatch platform, of which the RAS is the first part, provides the basis for the integration of renewable energies into the existing redispatch processes, that is, for future-proof congestion management. In concrete terms, RAS allows TSO control centres to monitor and process all relevant power plant interventions. As a result, TSOs can coordinate their redispatch decisions and activities more efficiently. Moreover, the central management introduces frictionless settlement and transparency processes.

The second part of the redispatch platform is the “Redispatch Determination Server” (“Redispatch-Ermittlungsserver” – RES). RES will complement or replace existing forecasting tools for expectable grid situations such as imminent bottlenecks. It will identify those options for action that are compliant with the regulations and most cost-efficient. Based on RES calculations, TSOs can resolve both predicted and existing grid congestions more efficiently than today. RES is scheduled to go into operation in 2021.

The four German TSOs have succesfully launched RAS, a joint server for redispatch settlement

Linkup
> See 50Hertz press release (html)
> See Amprion press release, in German (html)
> See TenneT press release, in German (html)
> See TransnetBW press release, in German (html)

See article on single page

DA/RE project: Redispatch 2.0

09.04.2020

The grid security initiative DA/RE (“DAta exchange/Redispatch”) was launched in summer 2018 by TransnetBW, the transmission system operator (TSO) from the south-western German state of Baden-Württemberg, and entered the pilot phase on 1 April 2019. The first retrievals of redispatch capacities were carried out in summer 2019 and now the pilot phase of the Baden-Württemberg grid project has been successfully concluded. Apart from TSCNET shareholder TransnetBW, three distribution system operators (DSOs) and four other partners from the fields of virtual power plants, home storage, and energy trading were involved in the DA/RE pilot phase.

Like comparable projects, DA/RE responds to the increasing volatility and decentralisation of electricity generation. In order to stabilise the entire electricity system in the future, DA/RE intends to facilitate the transition from the current redispatch with centralised large-scale power plants to new processes involving the flexibility potential of smaller decentralised generation plants and storage facilities. In the pilot phase, the DA/RE partners have achieved their first project goal: Processes for the coordinated retrieval of redispatch power from the distribution grid over several voltage levels have been developed and successfully tested in practice. The entire process chain from the exchange of planning data via DA/RE internal processes with merit-order based plant selection up to the activation of the physical plant retrieval was tested in three steps. A total of 40 plants of different technologies with rated outputs between 3kW and 30MW were involved.

Key assumptions corroborated
In the pilot phase, the coordinated redispatch retrieval was verified across all voltage levels and the basic functionality of the DA/RE concept was confirmed. With the experience and findings gained from this, the final DA/RE platform is now being developed, for which uniform processes and interfaces to automate the process steps will be defined. This will ensure the scalability and mass suitability of the system and simplify the integration of smaller grid and plant operators.

The two DA/RE project managers, Florian Gutekunst from TransnetBW and Kilian Geschermann from the DSO Netze BW, describe DA/RE as an open project: “We are looking forward to involving further interested parties from the ranks of grid and plant operators as fellow campaigners. We are all facing growing challenges due to the transformation of the generation landscape; together we can find smart solutions and better meet the challenges.”

The pilot phase of the DA/RE project for smart decentralised redispatch solutions has successfully been concluded

Linkup
> See TransnetBW press release, in German (html)
> Visit DA/RE website, in German (html)

See article on single page

Smart Grid of the future tested

07.04.2020

Small decentralised power generation plants, storage units and consumers must increasingly take on the role of stabilising the transmission system, a task that has so far been performed mainly by large, centralised power plants. The Dutch-German transmission system operator (TSO), TSCNET shareholder TenneT, is participating in two projects investigating the technical feasibility of decentralised stabilisation options. These two projects are C/sells with a focus on southern Germany and solar energy and enera with a focus on northern Germany and wind energy. Besides TenneT, C/sells and enera comprise various actors from the energy sector, research institutions and distribution system operators (DSOs). Both projects involve regional online platforms for the management of decentralised flexibilities and are funded by the German Federal Ministry for Economic Affairs and Energy in the framework of the innovation programme “Smart Energy Showcases” (“Schaufenster intelligente Energie” – SINTEG).

To connect suppliers and demanders of flexibility, C/sells has developed a flexibility platform called “comax”: Providers of flexibility report existing potential and grid operators can access this potential and coordinate with each other to retrieve their respective needs. In the enera project, a stock exchange-based local flexibility market is being developed that merges supply and demand for flexibility and allocates it to grid operators in a highly efficient manner. By linking the two online platforms of C/sells and enera, the smart grid of the future has now been field-tested and the targeted control of decentralised electricity consumers, storage facilities and generators has been trialled under real conditions throughout Germany for the first time.

During the test run, in coordination with the DSOs involved, the electricity demand of a storage facility in the northern windy state of Lower Saxony was increased at the request of TenneT to absorb electricity from renewable energy sources. At the same time, biogas and CHP (combined heat and power) plants in the south of Germany fed more electricity into the grid to meet the local demand. This has reduced the amount of electricity to be transmitted through the power grid and helped to eliminate bottlenecks.

Tim Meyerjürgens, COO at TenneT, comments on the successful test: “In the future, we will need millions of decentralised systems to stabilise the transmission grid. To this end, grid operators at all levels must collaborate and develop new tools to exploit the potential of CHP plants, heat pumps, biogas plants, battery storage, electric cars, power-to-gas plants and other decentralised facilities for greater grid security. Our test has shown how this works successfully.”

TenneT carried out a successful test on how to use decentralised consumers, storage facilities and generators to stabilise the grid (picture: screenshot taken from the C/sells website)

Linkup
> See TenneT press release, in German (html)
> Visit C/sells website (html)
>Visit enera website, in German (html)

See article on single page

RSC future perspectives: integrate, cooperate, and digitise

31.01.2020

The annual conference “Future Power Grids” (“Zukünftige Stromnetze”) brings together key players from the German energy sector with a focus on power grids to facilitate a prolific exchange between politics, research and industry. This was once again the case this year when, under the auspices of the German Federal Ministry for Economic Affairs and Energy, energy experts met in the German capital of Berlin on 29 and 30 January. “Future Power Grids 2020” was technically chaired by Christian Schorn, Head of Asset Management and Operations at TSCNET shareholder TransnetBW, the transmission system operator (TSO) from the southwest of Germany.

Among the representatives of research institutions, ministries, authorities, NGOs and energy companies were Thomas Dederichs, head of energy policy at TSCNET shareholder and German TSO Amprion, and Maik Neubauer, one of the two managing directors of the Munich-based regional security coordinator (RSC) TSCNET Services. Mr. Dederichs spoke about the role of transmission grids in the further development of market design, while Mr. Neubauer, under the heading “The European Perspective – Integration of Renewables and Grid Security”, gave an overview of the history, services, tasks and challenges of European RSCs in general and TSCNET services in particular.

New Challenges for transmission infrastructures
Neubauer depicted the highly meshed European power transmission grid as one of the most complex critical infrastructures in the world and the function of the RSCs as an early warning system for the European TSOs to identify potential risks in the system. RSCs assess these risks continuously and in a coordinated manner and counteract potential congestions and power failures. The establishment of the RSCs was a reaction of the European Commission (EC) to a Europe-wide power outage in 2006 with under- and over-frequencies, which affected around 15 million people across Europe.

The increase in volatile renewable energies in the system further intensifies the need for the work of the RSCs. However, the tasks of the RSCs based on the third and fourth EC Clean Energy Package – e.g. security and risk analysis, capacity calculation, short term adequacy forecasts and longer-term outage planning coordination – depend on intensive cooperation between the European RSCs. The continuous collaboration of almost all European TSOs is essential, and the interests of the energy market and system security needs to be continuously balanced. In the long term, only the digitisation will be able to manage the increasing complexity of the grid. Neubauer points out the growing integration of OT (Operations technology) and IT (Information technology) layers and explicitly referred to the importance of artificial intelligence for congestions analysis and future network control and security.

Maik Neubauer presented RSC insights and future perspectives at the “Future Power Grids 2020” conference in Berlin (picture: Stefan Widua)

Linkup
> Visit conference website (html)

See article on single page

APG investigates Flex-Hub concept

24.01.2020

In times of increasing shares of volatile renewable energies, flexibility is an important factor for European transmission system operators (TSOs). For this reason, TSCNET shareholder APG plans to introduce a Flex-Hub, which will enable small, decentralised flexibility resources to participate in the power frequency control of the national electricity grid. Together with the Energy Web Foundation (EWF), a global non-profit foundation to promote block chain technology in the energy sector, the Austrian TSO is conducting a feasibility study for the concept being developed by APG.

This proof of concept is intended to provide a solution for the technical implementation of the Flex-Hub using the open-source software application “Energy Web Decentralised Operating System” (EW-DOS), which includes the blockchain platform of Energy Web. The final objective of the hub concept is to efficiently integrate plant qualification, plant registration, bid management and billing functions of decentralised flexibility providers so that the additional flexibility can be made available for future challenges in power grid operation.

APG is conducting a proof of concept for its Flex-Hub model (picture: APG)

Linkup
> See APG press release, in German (html)

See article on single page

Precise prognoses with AI

11.12.2019

In the control area of the German transmission system operator (TSO) 50Hertz in northern and eastern Germany, the installed capacity of renewable energies is particularly high. Since renewable energy in Germany is typically generated at a considerable distance from the centres of consumption and thus must be transmitted over long distances, the transmission losses for 50Hertz are correspondingly high. In 2018, the TSCNET shareholder transmitted a total of 117TWh of electricity and the losses amounted to 2.5TWh which corresponds to 2%.

TSOs must compensate for these losses through costly feed-in measures. 50Hertz spent around €70m in 2018 on compensatory electricity and has a keen interest in predicting losses more accurately and purchasing electricity for compensation at lower cost on the electricity market. Therefore, 50Hertz has developed a new prognosis model based on Artificial Intelligence (AI).

The previous model was based on forecasts for the expected feed-in of wind and solar power and a comparison with similar days in the past. For the new model, 50Hertz provided a much larger database: At 70 different locations in the 50Hertz control area, data on the feed-in of renewables as well as on the amount of wind, insolation and temperature are collected every quarter of an hour. With this enormous quantity of data, the artificial neural network is to calculate a transmission loss forecast for the following day, also with an accuracy of 15 minutes. The forecasts are then compared with the actual grid losses and the algorithm is automatically adjusted. This process is repeated thousands of times and the forecasts become more and more accurate.

The neural network has been in the test phase since the end of June 2019. Since then, the data has been cleansed and a database has been built so that the AI algorithm has been continuously improved and highly reliable prognoses can now be created. Since 9 December, the model is fully applied and used operationally at 50Hertz.

50Hertz has developed an AI based forecast model for grid losses (picture: 50Hertz)

Linkup
> See 50Hertz press release (html)

See article on single page

Tool for evaluating investments in storage facilities

19.06.2019

Wind and solar, the primary and volatile power sources of the energy transition, require more grid flexibility, which can be provided, for instance, by storage facilities. Energy storage technologies open opportunities for use in future energy markets and for a range of other system and grid-related purposes. For this reason, TSCNET shareholder TenneT, the Dutch-German transmission system operator (TSO), is involved in many research initiatives on flexibility, e.g. to explore power-to-gas applications, electric vehicles and end-user participation in the energy system of the future.

TenneT has now introduced a new interactive assessment tool for storage investments, on which Tim Meyerjürgens, COO of TenneT, comments: “We want to support the electricity storage market. Storage facilities are an important source of flexibility for us to stabilise the grid. In the end, this can help to reduce the need for future grid extension.” Especially when it comes to questions concerning levies, charges or taxes as well as revenue opportunities, the TSO aims to assist market players and to create transparency.

This is why the tool, developed by TenneT in cooperation with Navigant Consulting, was specially designed for the economic evaluation of investments in grid-connected storage facilities. It compares technologies or types of financing and estimates maximum revenues based on an optimised use of storage units in different markets. The user can define individual key parameters or customise predefined projects to obtain a detailed breakdown of the results in terms of net present value and cash flow.

TenneT presents an interactive tool to evaluate investments in grid-connected storage facilities

Linkup
> See TenneT press release, in German (html)
> Visit site for free tool download with detailed instruction manual, in German (html)

See article on single page

AI for decentralised grid stabilisation

06.06.2019

In a sustainable energy future, small decentralised plants such as combined heat and power (CHP) plants, heat pumps or biogas units must assume the role of stabilising the transmission system, a task which is nowadays mainly performed by large, centralised power plants. To investigate the technical feasibility of decentralised stabilisation options, TSCNET shareholder TenneT, the Dutch-German transmission system operator (TSO), the distribution system operator (DSO) Bayernwerk and Consolinno Energy GmbH have now jointly carried out a successful test in the southern part of the TenneT control area, the German federal state of Bavaria.

Since there is a vital public interest in such future-oriented technological solutions, the test was funded by the German Federal Ministry for Economic Affairs and Energy in the framework of the research project “C/Sells” which is part of the innovation programme “Smart Energy Showcases. Digital Agenda for the Energy Transition” (“Schaufenster intelligente Energie. Digitale Agenda für die Energiewende” – SINTEG). During the test, at the request of TenneT, the feed-in of a CHP plant controlled by Consolinno and connected to the low and medium-voltage grid of Bayernwerk was increased in order to provide the grid with the electricity required for stabilisation in the event of a bottleneck.

What is new is that each plant autonomously determines its flexibility potential through artificial intelligence (AI). The respective potential of the individual plants can then be further aggregated by means of swarm intelligence. The plants are in normal marketing and operation mode and report free flexibility quantities to the grid operators. “In Bavaria alone there are several thousand CHP plants, heat pumps and biogas facilities, nationwide there are many thousands more. They can increase the flexibility of the energy system and thus contribute to a safe and decentralised energy system in Bavaria and Germany. David can thus become Goliath,” comments Tim Meyerjürgens, COO at TenneT. Also in several other cooperative pilot projects, the TSO is exploring the potential of decentralised flexibility.

TenneT has carried out a successful test on the deployment of small decentralised plants for grid stabilisation

Linkup
> See TenneT press release, in German (html)

See article on single page

ČEPS and SEPS to participate in IPDE

05.06.2019

The International Phasor Data Exchange (IPDE) platform is a multinational project to facilitate and optimise the exchange of operational data within the European interconnected transmission system. More specifically, these data derive from time-synchronous voltage, current phasor and frequency measurements which are collected and used in Wide Area Monitoring Systems (WAMS). IPDE is now making significant progress as the two TSCNET shareholder ČEPS and SEPS, the Czech and Slovak transmission system operators (TSO) respectively, have signed an agreement on participating in the platform.

Martin Durčák, Chair of the Board of Directors of ČEPS, comments that the “participation in the platform is another of our continual steps in the introduction of technological innovations and shift towards a digitally managed and controlled grid”. Miroslav Obert, CEO of SEPS, complements: “The project we are undertaking in collaboration with our Czech partners ensures method simplification and uniformity of phasor data exchanges between individual TSOs.”

ČEPS and SEPS have signed an agreement to participate in the IPDE Data Exchange platform

Linkup
> See ČEPS press release (html)
> See SEPS press release, in Slovak (html)

See article on single page