Precise prognoses with AI

11.12.2019

In the control area of the German transmission system operator (TSO) 50Hertz in northern and eastern Germany, the installed capacity of renewable energies is particularly high. Since renewable energy in Germany is typically generated at a considerable distance from the centres of consumption and thus must be transmitted over long distances, the transmission losses for 50Hertz are correspondingly high. In 2018, the TSCNET shareholder transmitted a total of 117TWh of electricity and the losses amounted to 2.5TWh which corresponds to 2%.

TSOs must compensate for these losses through costly feed-in measures. 50Hertz spent around €70m in 2018 on compensatory electricity and has a keen interest in predicting losses more accurately and purchasing electricity for compensation at lower cost on the electricity market. Therefore, 50Hertz has developed a new prognosis model based on Artificial Intelligence (AI).

The previous model was based on forecasts for the expected feed-in of wind and solar power and a comparison with similar days in the past. For the new model, 50Hertz provided a much larger database: At 70 different locations in the 50Hertz control area, data on the feed-in of renewables as well as on the amount of wind, insolation and temperature are collected every quarter of an hour. With this enormous quantity of data, the artificial neural network is to calculate a transmission loss forecast for the following day, also with an accuracy of 15 minutes. The forecasts are then compared with the actual grid losses and the algorithm is automatically adjusted. This process is repeated thousands of times and the forecasts become more and more accurate.

The neural network has been in the test phase since the end of June 2019. Since then, the data has been cleansed and a database has been built so that the AI algorithm has been continuously improved and highly reliable prognoses can now be created. Since 9 December, the model is fully applied and used operationally at 50Hertz.

50Hertz has developed an AI based forecast model for grid losses (picture: 50Hertz)

Linkup
> See 50Hertz press release (html)

See article on single page

AI for decentralised grid stabilisation

06.06.2019

In a sustainable energy future, small decentralised plants such as combined heat and power (CHP) plants, heat pumps or biogas units must assume the role of stabilising the transmission system, a task which is nowadays mainly performed by large, centralised power plants. To investigate the technical feasibility of decentralised stabilisation options, TSCNET shareholder TenneT, the Dutch-German transmission system operator (TSO), the distribution system operator (DSO) Bayernwerk and Consolinno Energy GmbH have now jointly carried out a successful test in the southern part of the TenneT control area, the German federal state of Bavaria.

Since there is a vital public interest in such future-oriented technological solutions, the test was funded by the German Federal Ministry for Economic Affairs and Energy in the framework of the research project “C/Sells” which is part of the innovation programme “Smart Energy Showcases. Digital Agenda for the Energy Transition” (“Schaufenster intelligente Energie. Digitale Agenda für die Energiewende” – SINTEG). During the test, at the request of TenneT, the feed-in of a CHP plant controlled by Consolinno and connected to the low and medium-voltage grid of Bayernwerk was increased in order to provide the grid with the electricity required for stabilisation in the event of a bottleneck.

What is new is that each plant autonomously determines its flexibility potential through artificial intelligence (AI). The respective potential of the individual plants can then be further aggregated by means of swarm intelligence. The plants are in normal marketing and operation mode and report free flexibility quantities to the grid operators. “In Bavaria alone there are several thousand CHP plants, heat pumps and biogas facilities, nationwide there are many thousands more. They can increase the flexibility of the energy system and thus contribute to a safe and decentralised energy system in Bavaria and Germany. David can thus become Goliath,” comments Tim Meyerjürgens, COO at TenneT. Also in several other cooperative pilot projects, the TSO is exploring the potential of decentralised flexibility.

TenneT has carried out a successful test on the deployment of small decentralised plants for grid stabilisation

Linkup
> See TenneT press release, in German (html)

See article on single page